URANO(2)
Missioni spaziali
L'esplorazione di Urano, come anche quella di Nettuno, è resa difficoltosa dalle grandi distanze che separano il pianeta dalla Terra e dal Sole. Ogni missione deve essere dotata di un sistema di alimentazione in grado di fornire energia alla sonda senza la possibilità di conversione dell'energia solare attraverso l'uso di pannelli fotovoltaici. Attualmente, l'unica fonte praticabile di energia è un generatore termoelettrico a radioisotopi.
Lo studio di Urano, infine, non è ritenuto prioritario dalle principali agenzie spaziali, che stanno concentrando le proprie risorse nell'esplorazione dei sistemi di Giove e di Saturno e stanno valutando l'opportunità di inviare una missione verso Nettuno.
Il sorvolo della Voyager 2
Le prime analisi condotte sui dati furono tuttavia un'enorme delusione: non veniva riscontrata la presenza di fasce parallele né di nubi, al contrario di quanto era stato osservato dalla Terra. L'atmosfera di un colore azzurro-verde era uniforme e priva completamente di dettagli. Fu solo grazie ad un trattamento delle immagini che apparvero sia le nubi che le altre formazioni.La sonda Voyager 2 toccò il massimo avvicinamento al pianeta il 24 gennaio 1986, ad una distanza di circa 81 500 km. Le osservazioni durarono solo sei ore, ma hanno permesso agli astronomi di imparare su Urano molto più di quanto avessero appreso da più di 200 anni di osservazioni dalla Terra.
La sonda scoprì nuove lune, inviò a Terra le prime immagini degli anelli e scoprì inoltre attività geologica sulle lune maggiori: depositi scuri in fondo a crateri ghiacciati indicavano la presenza di acqua sporca dovuta ad attività vulcanica.
Parametri orbitali e rotazione
Urano ruota attorno al Sole una volta ogni 84 anni terrestri. La sua distanza media dal Sole è di circa 3.000 milioni di chilometri (circa 20 UA). L'intensità della luce solare su Urano è quindi circa 1/400 che sulla Terra. Gli elementi orbitali furono calcolati pr la prima volta nel 1783 da Pierre-Simon Laplace. Le discrepanze tra l'orbita predetta e quella osservata portarono alla proposta di John Couch Adams, nel 1841, che la causa sarebbe potuta essere la forza gravitazionale dovuta alla presenza di un altro pianeta al di là di Urano. Nel 1845, Urbain Le Verrier iniziò la propria ricerca di un altro pianeta nelle vicinanza dell'orbita di Urano. Il 23 settembre 1846, Johann Galle trova un nuovo pianeta, più tardi chiamato Nettuno, nella posizione prevista da Le Verrier.
Il periodo di rotazione dell'interno di Urano è di 17 ore e 14 minuti, in senso retrogrado. Come in tutti i pianeti giganti gassosi, la sua atmosfera superiore è soggetta a forti venti in direzione di rotazione. Ad alcune latitudini, come a circa 60 gradi sud, l'atmosfera visibile ruota molto più velocemente, completando una rotazione in meno di 14 ore.
Inclinazione assiale
La principale particolarità di Urano sta nell'inclinazione del suo asse che si trova inclinato di 97,77° sul piano dell'orbita. Si può pertanto affermare che l'asse di rotazione di Urano giace quasi sul suo piano orbitale. Di conseguenza, uno dei due poli è diretto verso il Sole per metà dell'orbita, e per la successiva metà dell'orbita cadrà nella zona in ombra. Nel tratto intermedio all'inversione dei due poli rispetto al Sole, si verifica la situazione in cui il Sole sorge e tramonta intorno all'equatore normalmente.
Il polo sud di Urano era diretto verso il Sole al momento del fly-by della Voyager 2 nel 1986, risultando completamente illuminato. Quel polo è definito come "sud" in base alle convenzioni dell'Unione Astronomica Internazionale, che definisce il polo nord di un pianeta o satellite il polo che punta "sopra" il piano del Sistema Solare, indipendentemente dalla direzione della rotazione del pianeta. Un risultato di questo strano orientamento è che le regioni polari di Urano ricevono una grande quantità di energia dal Sole in maniera maggiore rispetto alle regioni prossime all'equatore. Tuttavia Urano è più caldo all'equatore che ai poli, anche se il meccanismo responsabile di ciò non è attualmente conosciuto.
Sembra anche che l'estrema inclinazione dell'asse di rotazione di Urano causi delle variazioni estreme nelle stagioni per quanto riguarda il tempo meteorologico. Durante il viaggio del Voyager 2 le nubi di Urano erano estremamente deboli e miti, mentre osservazioni più recenti (2005) fatte tramite il telescopio spaziale Hubble hanno rilevato una presenza molto più accentuata e turbolenta di allora, quando l'inclinazione dell'asse stava portando l'equatore nella direzione perpendicolare al Sole (tale allineamento si è avuto nel 2007).
La ragione dell'insolita inclinazione assiale di Urano non è nota con certezza: si è pensato in passato che durante la formazione del sistema solare un protopianeta con massa due volte quella terrestre sia entrato in collisionecol pianeta facendo "ruotare" il proprio asse. Tuttavia questa ipotesi non spiegherebbe perché le lune principali di Urano siano inclinate anch'esse di 98°, così come l'asse di rotazione e non abbiano invece conservato le orbite originarie. Nel 2011, un gruppo di astronomi guidati da Alessandro Morbidelli ha pubblicato uno studio basato su delle simulazioni al computer riguardo diversi scenari d'impatto avuti da Urano durante la formazione del sistema solare. Morbidelli et al. affermano che le collisioni subite da Urano durante la formazione del sistema solare dovrebbero essere state ripetute, due o forse più, perché nel caso di un solo impatto, le lune avrebbero assunto molto probabilmente una rotazione retrogada, al contrario di quanto effettivamente osservato nell'era attuale.
Caratteristiche chimico-fisiche
Composizione
Il modello standard della struttura di Urano prevede la divisione in tre strati: lo strato roccioso (silicati, ferro, nichel) al centro, un mantello ghiacciato nel mezzo e uno strato gassoso composto da idrogeno ed elio all'esterno. Il nucleo è relativamente piccolo, con una massa di appena 0,55 masse terrestri e un raggio inferiore al 20% del raggio totale, mentre il mantello ha una massa 13,4 volte quella terrestre. L'atmosfera esterna è relativamente inconsistente, appena 0,5 masse terrestri e costituisce il 20% del raggio di Urano. La densità del nucleo di Urano è di circa 9 g/cm3, con una pressione al centro di 8 milioni di bar e una temperatura di circa 5000 K. Il mantello non è costituito da ghiaccio nel senso convenzionale del termine, bensì da un fluido contenente acqua, ammoniaca e altre sostanze volatili. Le composizioni di Urano e Nettuno sono piuttosto diverse da quelle di Giove e Saturno, con una prevalenza dei materiali ghiacciati rispetto ai gas, e per questo motivo sono talvolta classificati come "giganti di ghiaccio".
Anche se il modello citato sopra è quello considerato standard, esistono altri modelli possibili, tuttavia i dati attualmente disponibili non consentono agli scienziati di determinare quale sia il modello corretto.
Massa e dimensioni
La massa di Urano è circa 14,5 volte quella della Terra, il che lo rende il meno massiccio dei pianeti giganti, nonostante il suo diametro, circa quattro volte quella della Terra, sia leggermente più grande di quello Nettuno. Con una densità di 1,27 g/cm3 Urano è il secondo pianeta meno denso del sistema solare, dopo Saturno. La sua densità indica che Urano è composto principalmente di acqua, ammoniaca e metano congelati. La massa totale di ghiaccio interno di Urano non è nota con precisione, perché emergono alcune differenze a seconda del modello scelto; essa dovrebbe essere compresa tra 9,3 e 13,5 masse terrestri. L'idrogeno e l'elio costituiscono solo una piccola parte della massa totale, rispettivamente 0,5 e 1,5 masse terrestri. Il resto della massa non ghiacciata ( da 0,5 a 3,7 masse terrestri) è costituita da materiale roccioso.